hadokenmaterials.io (BETA)The High Throughput Machine Learning Materials Design Platform |
Use this model created via deep learning for fast and accurate predictions of band gap using a single attribute.
Load example values into the form.
Enter the corresponding values to try the approximation for yourself.
** Use of this web page reqiures correct Citing and attribution in any or all work and/or papers produced from results generated by this service.
You can access the single-attribute band gap predictor here:
URL format: /api/v{Version}/MachineLearning/BandGap/Single
POST
{ "stoichiometry": "Ca2Cu2Ge4O12" }
JSON - response
{ "bandGap": 1.2049858165280045952682033686, "stoichiometry": "Ca2Cu2Ge4O12" }
XML - response
<BandGapSingleModel xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.org/2001/XMLSchema"> <BandGap>1.2049858165280045952682033686</BandGap> <Stoichiometry>Ca2Cu2Ge4O12</Stoichiometry> </BandGapSingleModel>
Copyright © 2017-2024 hadokenmaterials.io | Privacy | Terms | Citing | Contact